
Container and Cloud Native
Application Platform
Why do we need them and what is so great about it?

Bettina Bassermann
Product Sales Specialist Cloud & DevOps
Bettina.Bassermann@suse.com

Rania Mohamed
Solution Architect, Services Consulting
Rania.Mohamed@suse.com

2

Who is SUSE?

• Founded in 1992

• Largest independent open source vendor as of
March 2019

• Technology company

• Our Mission is to help customers to master the
digital transformation through Open Source
technology

• Innovating with Partners and communites

• Enterprise-Grade Support

3

Series about modern Application Development

• Software Development, Microservices & Container Management,

 a SUSE webinar series on modern Application Development

• Please find all SUSE Webinars here
 https://www.suse.com/de-de/events/webinars

Microservices –
Is it the Holy

Grain? A
Perspective of a

Developer

Container and
Cloud Native

Technologies –
Why do we need
them and what is
so great about it?

Why Kubernetes?
A Deep Dive in

Options, Benefits
and Usecasese

About making
Choices –

CaaSPv4 as
SUSE‘s

empowering of
Kubernetes

....stay tuned for the 2020 sessions with the Chamelion

4

Agenda

• Basics about Containerization

• Virtualization vs Containerization

• Benefits and Challenges for Containers

• How to overcome container Challenges

• Container Engine vs Containers Orchestrator

• Docker, Kubernetes and CRI-O – a comparison

• Containers & Cloud Native Development

• What’s the business value?

• Future of Containerization (potential outlook)

55

Basics about Container Technologies
History/Evolution of the containerization

• Container has been there since 1970s 

Unix
V7

Free
BSD
Jail

Unix
VServer

Jail

Solaris

Container

Open
VZ

Process
Container

LXC

Warden

LMCTFY

Docker

K8s

CRI-O

1979 2000 2001 2004 2005 2006 2008 2011 2013 2013 2014 2016

6

7

Life Post & Pre Containers

Basics about Container Technologies - Why?

• Big development environments

• Inconsistent environments

• Hard to handle variable loads.

• Limitation in Vertical scaling

• Hard to scale horizontally

• Testing limitation even with automation

• Expensive maintenance

• Hard to troubleshoot PROD problems

• Hard to deliver high SLAs

• Big Shared databases

• Hard to isolate and maintain
dependencies

• Emulators (expensive and not efficient)

Life pre-containers

• Smaller footprint

• Consistency for everyone.

• Ease of handling variable loads

• Enable auto scaling as per the need

• Better testing coverage

• Ease and cost efficient maintenance

• Ease of troubleshooting PROD problems

• Enable delivering High SLAs

• Enable decentralization of data

• Enable autonomous/separation of
concerns and isolation

• Enable building cost efficient emulators
and simulators in the cloud and ground

Life post-containers

8

Basics about Container Technologies -
Characteristics of containers

• A Container runs an Image  abstraction

• Image only has a minimal OS (no real OS),
the app code, all necessary executables,
binaries, libraries, & configuration files

• Containers are executed by a runtime engine

• Highly Portable

• No depends on any Guest OS or hardware

• Lightweight

• Repeatable

• Containers may communicate with each
other directly

• Sharing the kernel of the host operating
system

• Each container has a single executable
service

• Fast provisioning of a container instance
(nano to seconds depending on the size of
the Image)

• Dependencies are manageable at the
runtime

Containers don’t care for the host OS, its OS is minimal so it shouldn’t
matter if the minimal OS is Linux or windows  9

10

Containers & Virtual
Machines

Virtualization vs Container Technologies
What is a VM?

• Virtualizing a machine hardware running a complete OS

• Must run on a Hypervisor running on the host OS to allocate resources for the VM

• Allow running different OS on the same hardware

• Each VM owns its own kernel

Point of
Comparison Physical servers Virtual Machine

Scalability Hard to scale. Easy to scale vertically.

Maintenance Hardware gets old and maintenance gets expensive and hard. Maintenance is better especially from a hardware perspective.

Cost Very expensive. Much less expensive.

Performance Better performance as the full power of the physical hardware is
dedicated to the application. It is not as good as the physical server’s capacity.

Footprint Large footprint. Smaller footprint.

Security You are in control and charge of hardware and network so advanced
security policies can be implemented

it is limited as you cannot physically isolate the network, the data
communication and storage. You still can implement security on
the data and the routing of it.

Portability Is not portable at all. Highly portable 11

Virtualization vs Container Technologies

• Failover

• High SLA

• Complexity

• Scaling (horizontally and vertically)

• Cost of Maintenance

• Cost of Hardware and software upgrades

• Time and effort of building a VM

• Portability

• Agility

Virtualization Challenges

12

Virtualization vs Container Technologies
VM vs Containers

Point of
Comparison Virtual Machine Container

Scalability
Easy to scale horizontally but have some limitation on the
vertical scaling.
Scalability is expensive.

Easy to scale horizontally; no need to scale vertically. Scalability is not
expensive.

Maintenance Maintenance is hard. Maintenance is very simple and more efficient. The owner of the image is the
one responsible for maintaining it.

Cost Much more expensive than a container.

Almost zero cost, depending on the software used by the image. No cost of
the operating system as it is very light. You are only paying tor licenses and
support for the software installed above the operating system. Licenses in this
case are much cheaper than the VM because most of the software licensing
models are based on VCores/Cores — allowing you to host a number
containers above it.

Performance Better performance as no kernel is shared. It is very good even though the same kernel is shared in the hosting
environment (whether it is a VM or a Bare Metal machine).

Footprint Larger footprint. Extremely small footprint.

Security
Better security because no sharing occurs in the kernel.

Security can be a challenge when using containers given that containers are
sharing the same kernel. With containers, you cannot physically isolate the
network and the data communication and storage. Potentially the community
has started working on building a lightweight VM with a very small footprint
like a container but with its isolated runtime and kernel.

13

Virtualization vs Container Technologies
VM vs Containers

14

Virtualization vs Container Technologies

• Answer is NO 

• Container were introduced because of the challenges in App Delivery on VMs

• Containers don’t replace entirely the VMs

• It depends on the needs and requirements

Is a VM being replaced by containers?

15

Virtualization vs Container Technologies – When?

• Solution is simple

• Business is stable or small

• No frequent development on the app
happening

• Load is predictable and there is not big
variant between the peak and low loads.

• Integration is not complex

• No nonfunction issues with the application

Go for VM when

• Solution is complex

• Requirements are changing frequently

• Load is a variable

• Have big teams of development

• Have multiple third party developing
services

• Targeting Digital Business

• Building an as a service (PaaS, SaaS or
XaaS)

• Targeting multi-cloud

Go for Containerization when

Again, don’t build a ship to sail to your home because you
love sailing, biking can still get you home in 5 minutes  16

17

Containerization Benefits &
Challenges

Benefits and Challenges for Containers?

• Scalability

• Simplicity

• Cost efficient

• Enable digital transformation

• Supports time to market apps

• Consistency – you see what the developer sees 

• Smaller footprint

• Standards

• Enable Autonomous

• Flexibility

Benefits of Containers

18

Benefits and Challenges for Containers?

• Security

• Governance

• Integration

• E2E Troubleshooting

• Orchestration of containers lifecycle

• Management

• Logging

• Monitoring

Challenges of Containers

19

How to overcome containers challenges?

• Powerful Containers Orchestrator engine

• Secured Containers (e.g. KataContainers)

• Standard and secured Container Runtime (e.g. CRI-O)

• Service Mesh

• Event Driven Architecture

• FaaS

20

21

Containerization & Workload
Orchestration

Container engine vs Containers Orchestrator
Containers Orchestrator

• Manage and operate the lifecycle of a
container(creation, termination, failure…)

• Auto Scaling

• Mange communication and integration for
containers

• Manage containers dependencies

• Deliver containers cluster by the idea of
deployments

• Offers different flavours of containers
clusters like daemon set, static and
others.

• Containers Storage management

• Enable Infrastructure services for
containers such as load balancers

• Enables service discoverability

Containers engine/Runtime

• Creates & build a container using an Image

• It the runtime the container run above

• Abstract the container from the hosting OS

• Integrates with image registry

• High level and low level container runtime

22

Container engine vs Containers Orchestrator

23

24

Docker Vs CRI-O Vs K8s

Docker, Kubernetes and CRI-O – a comparison

• The most Famous Container runtime 

• It starts by LXC implementation then moved to containerd (docker
containerization and virtualization library)

• It has its own famous clis (docker and dockercompose)

• More into client-server architecture.

• Fat daemon (always running) – dockerd

• Uses Linux control groups

• Uses Linux namespaces to isolate containers

• No separation of concerns everything is done by dockerd

• No Standards and no limitations 

What is Docker?

25

Docker, Kubernetes and CRI-O – a comparison

• An implementation of CRI enabling OCI runtime compatible

• Has a set of powerful utilities and clis such as crictl, podman, buildah, skopeo

• Is a distributed services architecture, more into MicroServices.

• Implements CNI

• No Fat Daemon

• CRIO generates OCI JSON file which is used to run the container on an OCI
compatible runtime (runc)

• Containers are monitored separately using conmon

• More into Kubernetes standards

What is CRIO?

26

Docker, Kubernetes and CRI-O – a comparison

• Market leading Container Orchestrator

• Architecture is based on API-centric and plugin design principles

• It enable building a cluster running containers to support building caas and paas

• A cluster has two types of machines (nodes), master and worker/minion nodes

• Master node holds the control plane of the cluster.

• Worker node holds the workloads running in the cluster.

• Both nodes run a container runtime (if Master CP is containerized)

What is K8s?

27

Docker, Kubernetes and CRI-O – a comparison

• Master Node components:
• Kube-API Server, it is the frontend for the K8s cluster

• Kube-Scheduler, component responsible for scheduling and managing the workloads (pod), it is more the
implementer. It has the power to determine where the workload best to be scheduled

• Kube-Controller manager, component is the brain of K8s, it is always watching the cluster current state
and determine the proper actions to achieve the desire state

• Etcd, it is a key-value database/store hosting k8s cluster state and collected data

• Worker Node components:
• Kubelet, it is the node agent through which the kube-API Server fetch data from the node and send updates

to the node running workloads.

• Kube-proxy, it controls the network of the node, including the service implementation for load balancing
and request forwarding

What is K8s?

28

Docker, Kubernetes and CRI-O – a comparison
What is K8s?

29

Docker, Kubernetes and CRI-O – a comparison
Docker CRI-O

• Standard implements CRI and
support OCI

• Light weight (lots of small
components, with defined roles &
collaborating flows)

• Decentralized architecture

• Secured by as CRI-O containers
are children of the process that
spawned it

• Fully compatible with K8s
Roadmap and community

• Implements CNI which make it
more standard from a network
setup

• Fast

• Can run Docker images

• Define the orchestration
standards

• Lightweight and more API-
Centric and plugins
approach

• Decentralized architecture,
more distributed solution

• More into monitoring and
orchestration, doesn’t run
containers

K8s

• Not Standard

• Heavyweight/fat daemon

• Central architecture

• Has security constraints

• Has no limitation 

30

31

Containers & Cloud Native

Containers & Cloud Native Development

• Containers can be used to implement cloud native apps.

• Cloud Native Development is more about designing principles.

• Containers supports basic principles of the cloud native but doesn’t enforce it
(Stateless, event driven architecture, autonomous…)

• Container Images can be used as a base runtime for Cloud Native Development,
like in Cloud Foundry

32

What is the business value?

33

Containers

Microservices

Cloud Native
Development

Platform

Digitalized
Business

33

What is the business value?
What is digitalized Business?

• Integration of different business contexts
 smart digital market

• Allow business entity learns from other
business entities

• Business entity builds a big ecosystem
enabling

• Continuous innovation

• End user experience enhancements

• Responsive business rather than
reactive business DATA is the fuel of the Digitalized business

Complex event processing and event processing is the
engine of the digitalized business

34

What is the business value?

• To avoid losing and shrinking business 

 “In today’s era of volatility, there is no other way but to re-invent. The only sustainable advantage you can

have over others is agility, that’s it. Because nothing else is sustainable, everything else you create,
somebody else will replicate.”

Jeff Bezos, Amazon

 “At least 40% of all businesses will die in the next 10 years… if they don’t figure out how to change their

entire company to accommodate new technologies”

John Chambers, Cisco

Enterprises not considering digitalizing their business are destined to be
part of the 80% of companies that are at risk of collapse according to

TechCrunch

Why digitalized Business? Why take the risk?

35

36

Business UseCase

What is the business value?

Onboard Services Offboard Services

Connector Agent

Connected
Car Service 1

Connected
Car Service 2

Connected
Car Service N

A
P

I
G

at
ew

ay

IoT

Digital Twin

Connected
Car Service 1

Connected
Car Service 2

Connected Car
Service N

Data Analytics
Service

System of Engagement (FE)

37

Automotive Usecase – Connected Car

What is the business value?
Automotive Usecase – Connected Car

Offboard Services

Connector Agent

Connected
Car Service 1

Connected
Car Service 2

Connected
Car Service N

A
P

I
G

at
ew

ay

IoT

Digital Twin

Connected
Car Service 1

Connected
Car Service 2

Connected Car
Service N

Data Analytics
Service

System of Engagement (FE)

Virtualized Vehicle

Connector Agent

Connected
Car Service 1

Connected
Car Service 2

Connected
Car Service N

38

39

A vision for the future of
containerization

Future of Containerization (potential outlook)

• CRI-O is the future of container runtime

• Kubernetes enables cluster of clusters (as a hierarchy and tree of organizations)

• Kubernetes enables running MSA in devices such as vehicles  like a Micro or
nano cluster kubeEdge

• Kubernetes gets involved more in Machine to Machine communication:
• Controlling the lifecycle of events

• Enabling publishing of patches for MSA into devices

• Managing the lifecycle of machine/device service releases

• More and more engagement in the implementation of the system of engagement as well as
system of records

40

Please join us on our next session:

41

Why Kubernetes?

A Deep Dive in Options, Benefits and
Usecases

November 22nd 2019
09:00 AM GMT

42

43

Thank you

44

Unpublished Work of SUSE LLC. All Rights Reserved.
This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE LLC.
Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of their
assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated,
abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE.
Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer
This document is not to be construed as a promise by any participating company to develop, deliver, or market a product.
It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing
decisions. SUSE makes no representations or warranties with respect to the contents of this document, and specifically
disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The development,
release, and timing of features or functionality described for SUSE products remains at the sole discretion of SUSE.
Further, SUSE reserves the right to revise this document and to make changes to its content, at any time, without
obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in this presentation are
trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All third-party trademarks
are the property of their respective owners.

